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A numerical construction is proposed for the shape of the wall of the subsonic 
part of a nozzle. The design realizes nonseparated flow with an absence of 
local supersonic zones. The method is based on the simultaneous numerical solu- 
tion of boundary-layer equations and equations of motion of an inviscid gas. 

The task of profiling is broken down into successive stages. First, a solution is ob- 
tained for the inverse problem of designing the subcritical part of the nozzle for inviscid 
flow, with data being assigned on a previously unknown wall of the nozzle AB (Fig. |). Then 
design curve AB is taken as the outer boundary of the boundary layer formed near the nozzle 
wall, and the second stage of the solution is begun. This stage consists of calculating the 
equations of the boundary layer and the displacement thickness, which is then used to deter- 
mine the corrected nozzle wall AQ (Fig. I). 

Let us examine the first problem. A distribution of Mach numbers M = M(s) ~ I is given 
along a curve AB of length I (Fig. |). It is assumed that the size of the inlet aperture AD 
is given, while the condition M = | must be satisfied at the outlet BC. The condition Vy = 0 
must be satisfied at AD and on the symmetry axis DC. Flow is assumed to be inviscid and eddy- 
free in the region ABCD and described by the equations: 
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T h i s  p r o b l e m  i s  s o l v e d  n u m e r i c a l l y  u s i n g  t h e  i t e r a t i o n  me thod  d e s c r i b e d  i n  [ 1 ] .  A f t e r  
t h e  f i r s t  p r o b l e m  i s  s o l v e d ,  t h e  c o o r d i n a t e s  o f  t h e  c u r v e  AB and  '@ -- t h e  s l o p e  o f  t h e  v e l o c i t y  
v e c t o r  to  t h e  x a x i s  --  a r e  d e t e r m i n e d .  

Between the nozzle wall AQ (Fig. I) and the curve AB, we assume the flow to be viscous 
and to satisfy the equations of a laminar compressible boundary layer: 
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Equations (2) are written in orthogonal coordinates s and n, related to the surface of the 
wall. 
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Fig. I. Flow region in the vari- 
ables x, y. 

The boundary conditions have the form 

u (s,  O) = v (s,  O) = O, u (s, oo)  = w e  (s) ,  

h(s, O ) = ~ R T w ( s ) ,  h(s, oo)=he(s). 
z - - 1  

The p r e s s u r e  Peo and t e m p e r a t u r e  Teo a r e  a s s i g n e d  a t  p o i n t  A. These  v a l u e s  and t h e  q u a n t i t y  
M(O) a r e  used  to  c a l c u l a t e  t h e  c o n s t a n t s  Cz and C2 i n  Eq. (1 ) .  Along AB we have  

w e (s) = F 2C1 (• - -  1) M 2 (s)/12 4- (• - -  1) M z (s)], 
z (3) [ 2]._i 

he (s )=C i ,  P e ( s ) = C  2 x -~ - I  2 C t - - W e  . 
2• .2 

In  the ax isymmetr ic  case, r ( s )  i s  g iven in  the form of a t ab le  obta ined from c a l c u l a t i n g  
i n v i s c i d  f low.  In  the numer ica l  i n t e g r a t i o n  of  system (2 ) ,  i t  i s  assumed tha t  there  is  no 
boundary l aye r  a t  po in t  A. The boundary cond i t i ons  at  s = 0 were obta ined by so l v i ng  the 
s i m i l a r  problem o f  the boundary l a y e r  on a p l a t e .  

System (2) was i n t e g r a t e d  numer i ca l l y  us ing the f i n i t e - d i f f e r e n c e  method proposed in [2]. 
The method i s  based on a d i f f e r e n c e  r e p r e s e n t a t i o n  of  the boundary - layer  equat ions w r i t t e n  in  
integral form. 

The displacement thickness 6" is calculated as a function of s after the boundary-layer 
equations are integrated. Knowing x and r -- the coordinates of the curve AB -- and the quan- 
tities ~ and 6*, the formulas 

F= r + 6* cos(~), ~ =  x - -  8" sin (~) (4) 

can be used to calculate the coordinates x and ~ of the corrected nozzle wall. 

The number of design points for solving the first problem was 400 (10 along the y axis 
and 40 along the x axis), while the second problem was solved using 500 points along the 
n axis and 400 points along the s axis. The average computing time for one variant on a 
BESM-6 computer was 30 min. 

Figure 2 shows examples of calculated contours for axisymmetric nozzles. The following 
Mach number distribution was selected for curves I and 2 along AB: 

M 2 (s) = M~ + (1 --.M~)exp [ - -K(s- -L)2] .  (5) 

Integration of the boundary layer in these and subsequent calculations was done under the 
following conditions: the value of Teo was taken at 1500~ pressure Peo = 1 atm, and the 
temperature of the nozzle wall Tw was a constant 373~ The length of the generatrix L = 2, 
the viscosity coefficient was determined from Sutherland's equation, and the Prandtl number 
Pr = 0.71. 

Figure 3a shows corresponding values of m* = 6*r in relation to s for the nozzles 
shown in Fig. 2. It is apparent that the displacement thickness is relatively small for all 
values of s. The transsonic parts of the inviscid and corrected nozzles differ very little, 
especially for the steeper nozzle (curve 2). Since, in accordance with Eqs. (5) and (3), 
pressure decreases monotonically along AB in these variants, boundary-layer separation does 
not occur. 
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Fig. 2. Contours of nozzles constructed 
without allowance for viscosity (dashed 
curves) and corrected with Eqs. (4) (solid 
curves). The values of M(s) were given 
from Eq. (5) for curves I and 2: I) at 
M~ = 0.OI, K = 13.5; 2) at M~ = 0.001, K = 

8; 3) values of M(s) given from Eq. (6) 
(variant 6 from Table 2). 

TABLE I. The Relation o(K, L) with M(s) Given from Eq. (5) 

1,3,5 1,3,5 154 67,519 ,5 
L 1 2 1 ,'67 12,333 2 1 2  I 2 

o, % lo,5 I I 7,, 14,5 8,0 _ ] 7,3 7,4 I 7,6 �9 

However, the calculated gas flow in the above nozzles at the inlet section AD is nonuni- 
form with respect to the velocity modulus of w. It should be noted that the uniformity of 
the flow is guaranteed in the present work by the formulation of the problem. The condition 
of flow uniformity at the outlet is of practical interest in design work, such as for wind 
tunnels or gas-discharge and ion lasers ~, 4]. However, works devoted to obtaining a uniform 
outflow also presuppose uniformity at the inlet, owing to design considerations. Therefore, 
it is interesting to determine which factors will yield a uniform flow at the inlet given a 
uniform outflow. 

The degree of nonuniformity of the inflow may be characterized by the parameter o = Aw/ 
w A • 100%, where Aw = max[w -- WA[ among all of the values of velocity modulus taken along AD. 
Calculations showed that Aw = WD-- WA for nozzles with a monotonic distribution of velocity 
along AB, such as given by Eq. (5). The value of o increases with an increase in the steep- 
ness of the nozzle walls. For the nozzle represented by curve 1 in Fig. 2, o = 10.5%. For 
the steeper nozzle represented by curve 2, o = 17.1%. 

One method of obtaining a uniform flow at the inlet is increasing the nozzle length with 
a fixed value of Mo at point A. Thus, it can be seen from Table I that, for the velocity dis- 
tribution (5) being examined, lengthening of L by 0.167, i.e., by ~8%, lowerso from 10.5 to 
7.1%. An increase in L by 0.333 decreases o to 4.5%. But lengthening the generatrix of the 
nozzle leads to an unwanted increase in its weight. Therefore, it would be useful to solve 
the problem of reducing the nonuniformity of the inflow with fixed values of Mo and L. It 
should be noted that a similarly stated problem was studied in ~], which dealt with subsonic 
channels. In this work, flow nonuniformity was decreased as a result of selection of the 
nozzle wall by solving a series of direct problems. 

In our work, flow nonuniformity is decreased by selecting an appropriate velocity dis- 
tribution along the outer boundary of the boundary layer (Fig. I). By increasing the size of 
the nearly straight section AK (Fig. I), we can decrease ~. For distribution (5), an increase 
in the section AK with a fixed length of curve AB is achieved by increasing the value of the 
parameter K. The dependence of o on K is shown in Table I. An increase in K from 13.5 to 54 
reduces o to 7.3%. However, a further increase in K not only fails to further reduce o, but 
increases it. This has to do with the fact that, at high K, the contour corresponding to in- 
viscid flow becomes so steep that V x becomes negative close to the wall. 

Another, more effective method of reducing o is selecting a nonmonotonic velocity dis- 
tribution along the wall. The following distribution was used in calculations: 
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Fig. 3. Dependence of dimensionless displace- 
ment thickness m* on length of contour s: a) 
for nozzles I-3, shown in Fig. 2; b) for nozzles 
with the M(s) distribution given by Eq. (6) 
(variant ] from Table 2) at values of Teo equal 
to 4000~ (curve ]) and 3000~ (2). 

M~ (s) = 

M~ + (M~ - -  M~) exp [ - -  Ki (s - -  s2)~], s < st, 

m (s - -  sO 3 + n ( s - -  s y  + M~, s, G s < s=, 

M~ + (1 - -  M~)exp [ - - K ( s - -  [)~1, s >s.~, 
(6) 

where 0 < M~ < M~, 0 < sl < s2 < L. The coefficients m and n are chosen from the condition 
of joining of the functions M s and dM/ds at point s2. At s > s2, Eq. (6) agrees with Eq. 
(5). The form of the function M(s) given by Eq. (6) is shown in Fig. 4 for two different 
sets of values of the parameters sl, s2, M~, and Ki. 

The derivative dM/ds is negative at s < sl. Introduction of the wall section on which 
velocity decreases allows us to reduce ~. It should be noted that, in this case, Aw is no 
longer equal to the difference w D -- wA. Regarding inviscid flow, by selecting four free 
parameters in the distribution (6) -- s~, s2, M~, and K~ -- we can reduce ~ to any fixed value. 
Thus, Table 2 shows values of the parameters at which ~ ~ 1.2% in variants 2-6. 

However, if the function M(s) -- thus, the pressure along the outer boundary of the boun- 
dary layer AB -- is nonmonotonic, the lack of boundary-layer separation can no longer be guar- 
anteed. Nevertheless, by calculating the boundary-layer equation, we can not only determine 
a correction for the resulting contour, but also check to ensure the absence of separated flow 
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Fig. 4. The relation M(s), calculated 
from Eq. (6), for different values of 
the parameters sl, s2, MI, and KI: l) 
results corresponding to the first 
column in Table 2; 2) results for the 
sixth column. 
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TABLE 2. Values of the Parameters in Eq. (6) 

No. of vari4 ant i 2 3 4 5 6 

M1/Mo 0,670 0,707 10,742 0,775 I 0,806 0,837 

S 1 0,4 0,6 I 0,6 0 , 6 1 0 , 5  0,588 

0,6 1,2 1,4 1,45 I 1,576 1,6 
m 

$2 

K1 50 75 45 26,25 L 75 I 137,5 

for the given velocity distribution and values of Peo and Teo. Calculations showed that 
boundary-layer separation does not occur for variants 5 and 6 in Table 2 with Peo = I atm, 
Teo = 1500~ and Tw = 373~ 

The number 3 in Fig. 2 denotes the corresponding nozzle contours for variant 6, while 
the data in Fig. 3a shows the distribution of m*(s) in this nozzle. In contrast to curves I 
and 2 (Fig. 3a), curve 3 has two maximums. Meanwhile, the first maximum from the left occurs 
as a result of the nonmonotonic nature of the function M(s) and is located in the neighbor- 
hood of its minimum (the minimum value of M is reached at s = s4, noted in Fig. 3). At the 
same time, for the distributions determined by the parameters in the four left-most columns 
of Table 2, integration of the boundary-layer equations at a certain point near the velocity 
minimum produces an instability in the calculation, this instability being due to a change in 
sign at the value ~u/~n[n= o. This allows us to conclude that boundary-layer separation occurs 
at this point. If the condition ~u/~n]n= o > 0 were satisfied at all design points on the 
wall, as in the last two variants, the flow could be assumed intact. 

It should be noted that the intactness of the flow in a compressible boundary layer with 
a given wall temperature also depends on the temperature of the inviscid flow [5]. Figure 3b 
shows the relation m*(s) for the distribution of M(s) corresponding to the set of parameters 
from variant I in Table 2 at Teo equal to 4000 and 3000~ It can be seen that the thickness 
of the boundary layer near the minimum of the function M(s) increases sharply with a decrease 
in Teo. Boundary-layer separation occurs beginning with a certain value of Teo. For example, 
the flow becomes separated at Teo = 1500~ for the given distribution of M(s). 

NOTATION 

x, y, Cartesian coordinates; rA, size of inlet aperture; s, coordinate directed along 
tangent to wall and dimensionless with respect to rA; n, coordinate directed along normal to 
wall; ~, length of curve AB; L, length of curve AB dimensionless with respect to rA; r(s), 
wall ordinate; Vx, Vy, projection of velocity vector onto x and y axes; u, v, projection of 
velocity vector in directions s and n; w, velocity modulus; 9, slope of velocity vector to x 
axis; M, Mach number; P, pressure; p, density; • exponent of adiabatic curve; CI and C2, con- 
stants in the Bernoulli and energy equations; h, total enthalpy of a unit mass; ~, viscosity 
coefficient; Pr, Prandtl number; R, gas constant.- Indices: e, outer boundary of boundary 
layer; w, wall; 0, point A (Fig. I). 
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